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a b s t r a c t

The localized artificial diffusivity method is investigated in the context of large-eddy sim-
ulation of compressible turbulent flows. The performance of different artificial bulk viscos-
ity models are evaluated through detailed results from the evolution of decaying
compressible isotropic turbulence with eddy shocklets and supersonic turbulent boundary
layer. Effects of subgrid-scale (SGS) models and implicit time-integration scheme/time-
step size are also investigated within the framework of the numerical scheme used. The
use of a shock sensor along with artificial bulk viscosity significantly improves the scheme
for simulating turbulent flows involving shocks while retaining the shock-capturing capa-
bility. The proposed combination of Ducros-type sensor with a negative dilatation sensor
removes unnecessary bulk viscosity within expansion and weakly compressible turbulence
regions without shocks and allows it to localize near the shocks. It also eliminates the need
for a wall-damping function for the bulk viscosity while simulating wall-bounded turbu-
lent flows. For the numerical schemes used, better results are obtained without adding
an explicit SGS model than with SGS model at moderate Reynolds number. Inclusion of a
SGS model in addition to the low-pass filtering and artificial bulk viscosity results in addi-
tional damping of the resolved turbulence. However, investigations at higher Reynolds
numbers suggest the need for an explicit SGS model. The flow statistics obtained using
the second-order implicit time-integration scheme with three sub-iterations closely agrees
with the explicit scheme if the maximum Courant–Friedrichs–Lewy is kept near unity.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Significant recent research has focused on the application of direct numerical simulation (DNS) or large-eddy simulation
(LES) to compressible turbulent flows that may involve shock waves, contact surfaces, material discontinuities and their
interaction with the turbulence. The motivation for compressible DNS or LES is to elucidate the unsteady phenomena such
as mixing, combustion, heat-transfer, sound-generation and unsteady load, which may be of interest. A significant challenge
in the field of compressible DNS or LES is to establish a numerical scheme that is able to accurately simulate flows involving
flow discontinuities, turbulence and their interactions. The numerical algorithm needs to satisfy two competing require-
ments: the scheme needs to capture different types of discontinuities and also simultaneously resolve the broadband scales
of turbulence.

An attractive methodology to capture the discontinuities has been recently proposed by Cook [1] and extended
to curvilinear meshes by Kawai and Lele [2] while a high-order compact differencing scheme is used to resolve
. All rights reserved.
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turbulence. Basically these methods are the extension of previous work on hyperviscosity by Cook and Cabot [3,4] and
Fiorina and Lele [5]. The main feature of the method is to locally add artificial fluid transport coefficients, such as
artificial shear viscosity, bulk viscosity, thermal conductivity and species diffusivity, to physical fluid transport coeffi-
cients to capture the discontinuities by smearing the discontinuity over a numerically resolvable scale. The advantages
of this method are its simple formulation, low computational cost, ease of implementation, localization of the artificial
dissipation terms at the discontinuities (high-resolution characteristics of a high-order compact scheme can be pre-
served in smooth region), and the lack of a weighting/hybrid algorithm. All these advantages are desirable for com-
pressible DNS or LES of the flows involving shock, contact, and material discontinuities, turbulence and their
interactions.

In the context of LES of compressible flows using the localized artificial diffusivity (LAD) method, the recent investiga-
tion by Johnsen et al. [6] indicates that the original method is too dissipative for the dilatational motions and damps fluc-
tuations of the thermodynamic properties. This is mainly due to the overly dissipative nature of the original artificial bulk
viscosity introduced for shock-capturing. High-derivative (typically fourth-derivative) of strain rate tensor is used as a
shock indicator for the original artificial bulk viscosity [4]. Bhagatwala and Lele [7] improved on this drawback by mod-
ifying the dimensionless user-specified constant in the strain rate tensor based artificial bulk viscosity model. Mani et al.
[8] proposed a simple modification in which the original strain rate tensor based artificial bulk viscosity is replaced by
dilatation based bulk viscosity with a negative dilatation switching to improve this drawback. It is more reasonable to
use the dilatation h than the strain rate tensor S for the high-derivative function in the artificial bulk viscosity model since
the indicator of S is not able to distinguish shocks from turbulence. However, the question still remains whether the dila-
tation based high-derivative function used in the model is able to distinguish shocks from expansion and weak compres-
sion regions (without shocks) induced by the motions of turbulent eddies on LES grid where the flow is not fully resolved.
It is important to localize the artificial bulk viscosity only at shocks not to unnecessarily damp turbulence away from
shocks. The artificial bulk viscosity is not required in both expansion and weakly compressible turbulence regions without
shocks.

The other unclear issue concerns the relative roles played by the subgrid-scale (SGS) model, low-pass filtering and arti-
ficial bulk viscosity. In Ref. [8] the artificial bulk viscosity was coupled with the dynamic Smagorinsky model of Moin et al.
[9] with the modification of Lilly [10] in order to account for the subgrid terms. On the other hand, Cook and Cabot [4]
showed accurate evolution of the energy spectrum in a high Reynolds number decaying turbulence by using the artificial
shear viscosity. In addition to the SGS dissipation terms (according to [4] we loosely regard the artificial shear viscosity
as a SGS model throughout the paper) both the numerical approaches [4,8] involve the low-pass filtering scheme and the
artificial bulk viscosity which are required to maintain numerical stability. It should be noted that the artificial bulk viscosity
also has an impact on the vortical motions [8] although the bulk viscosity mainly affects the dilatational motions. That is, the
SGS model, low-pass filtering and artificial bulk viscosity each have some impact on near-grid scale eddies. Their relative
roles in determining the wavenumber spectra appears to have been bypassed in the existing literature. The present study
explores this question.

The another important aspect for the LAD approach is the coupling with an implicit time-integration scheme. The cur-
rent artificial diffusivity method is based on adding scalar artificial fluid transport coefficients. This may induce a severe
time-step restriction on highly stretched anisotropic meshes due to the viscous Courant–Friedrichs–Lewy (CFL) condition
when using explicit time-marching methods. For example, considering a shock that crosses a highly stretched fine mesh
region and is not aligned with the mesh, high value of the scalar artificial bulk viscosity is active in the stretched fine
mesh region, which may limit the time-step size below the practically acceptable level in explicit time-marching meth-
ods. Section 3.4 shows results for such a case where the shocks are within the fine stretched mesh region and the numer-
ical instability was encountered with the explicit method for the maximum inviscid CFL = 0.7. Also, in wall-bounded flow
simulations a highly stretched mesh is usually used to resolve the near wall region which impacts the time-step size due
to an inviscid CFL limit. In such applications implicit time-marching methods are necessary to reduce the computational
time.

The main objective of this paper is to evaluate the performance of the localized artificial diffusivity method on compress-
ible turbulent flows with shocks in the context of LES using compact differencing and low-pass filtering schemes. Emphasis
is placed on the improvement of the dilatation based artificial bulk viscosity by employing a switching function (shock sen-
sor), the investigation of the relative roles played by SGS model, low-pass filtering and artificial bulk viscosity, and the effect
of the implicit time-integration scheme and the time-step size within the framework of the numerical scheme used in this
paper.

In Section 3.1 we first use a model problem to investigate the effect of the dimensionless user-specified constant for
the dilatation based bulk viscosity in order to fix the value of the constant that appears in the model. Then, the perfor-
mance of the switching in the artificial bulk viscosity model, the effect of an explicit SGS model and the impact of the
implicit time-integration scheme and the time-step size are addressed through detailed results for the decaying com-
pressible isotropic turbulence with eddy shocklets [11,6] (Section 3.2) and a Mach 3 supersonic turbulent boundary layer
(Section 3.3). The numerical results are compared with available DNS data. Finally an illustrative application to the more
complex problem of mixing of a choked jet injected into a supersonic crossflow is given in Section 3.4. One-dimensional
canonical inviscid shock-related test problems (Sod shock-tube problem [12] and Shu–Osher problem [13]) are provided
in Appendix A.
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2. Mathematical models

2.1. Governing equations

The compressible Navier–Stokes equations for an ideal non-reactive gas are:
@q
@t
þr � ðquÞ ¼ 0; ð1Þ

@qu
@t
þr � ðquuþ pd� sÞ ¼ 0; ð2Þ

@E
@t
þr � ½Euþ ðpd� sÞ � u� jrT� ¼ 0; ð3Þ

E ¼ p
c� 1

þ 1
2
qu � u; p ¼ qRT; ð4Þ
where q is the density, u is the velocity vector, p is the static pressure, E is the total energy, T is the temperature, cð¼ 1:4Þ is
the ratio of specific heats, R is the gas constant, j is the thermal conductivity, d is the unit tensor. The viscous stress tensor s

(for a Newtonian fluid) is
s ¼ lð2SÞ þ b� 2
3
l

� �
ðr � uÞd; ð5Þ
where l is the dynamic (shear) viscosity, b is the bulk viscosity, and S is the strain rate tensor, S ¼ 1
2 ðruþ ðruÞTÞ.

In the compressible LES, the Navier–Stokes equations are spatially filtered, that introduce Favre-averaged variables.
Spatially filtered Navier–Stokes equations are similar to the Navier–Stokes equations but include additional subgrid-scale
stress, heat flux and species diffusion terms that need to be modeled.
2.2. Numerical schemes

The spatially filtered Navier–Stokes equations in conservative form are solved in generalized curvilinear coordinates,
where spatial derivatives for convective terms, viscous terms, metrics and Jacobian are evaluated by a sixth-order compact
differencing scheme [14]. For any scalar quantity fi for 1 6 i 6 imax, the finite difference approximation to the first spatial
derivative at node i, @fi

@nl
is obtained by the following formulas:
a
@fi�1

@nl
þ @fi

@nl
þ a

@fiþ1

@nl
¼ a

fiþ1 � fi�1

2Dnl
þ b

fiþ2 � fi�2

4Dnl
ð6Þ
where a ¼ 1=3; a ¼ 14=9 and b ¼ 1=9 for the sixth-order scheme. At boundary points 1 and 2 and correspondingly at imax
and imax�1, second- and fourth-order one-sided formulas are utilized that retain the tridiagonal form of the equation set
[15].

The following eighth(2Nth)-order low-pass spatial filtering scheme [14] is applied to the conservative variables once in
each direction after each final Runge–Kutta step or sub-iteration step for the explicit and implicit time-integration schemes
in order to ensure numerical stability:
af
�f i�1 þ �f i þ af

�f iþ1 ¼
XN

n¼0

an

2
ðfiþn þ fi�nÞ; ð7Þ
where fi is the solution vector, and �f i is filtered quantity for 1 6 i 6 imax. A eighth-order filter is obtained with

a0 ¼
93þ70af

128 ; a1 ¼
7þ18af

16 ; a2 ¼
�7þ14af

32 ; a3 ¼
1�2af

16 ; a4 ¼
�1þ2af

128 . The af is a free parameter satisfying the inequality �0:5 <

af 6 0:5. In this range, as af is increased, the filtering is more localized to the high wavenumbers. In the present study,
the af is fixed to 0.495 unless otherwise noted. High-order one-sided formulas are used for the near boundary points from
1 to 4 and correspondingly from imax to imax�3 [16]. Detailed spectral responses of these filters may be found in Ref. [17].
Real part of the modified wavenumber for the first derivative approximation using the sixth-order compact difference
scheme and the transfer functions of the eighth-order low-pass filter with af ¼ 0:495;0:497 and 0.499 with single, 100
and 1000 times application are given in Fig. 1.

The compact differencing/filtering scheme with the localized artificial diffusivity method is coupled with both explicit
and implicit time-integration methods. The classical, four-stage, fourth-order, low-storage form of the Runge–Kutta method
(RK4) [18] and the second-order fully implicit scheme (Imp2), called ADI–SGS scheme [19,20], are used for time integration.
The ADI–SGS scheme is derived by combining alternative direction implicit (ADI) factorization [21] with the lower-upper
symmetric-Gauss–Seidel (LU-SGS) method [22]. Three steps of sub-iterations (Newton–Raphson iteration) are adopted to
minimize the errors due to the linearization in the implicit scheme.
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Fig. 1. Characteristics of first spatial derivative approximation and low-pass spatial filtering with single, 100 and 1000 times application. (a): Solid line,
sixth-order tridiagonal compact difference scheme; dotted line, exact. (b): Solid line, af ¼ 0:495; dashed line, af ¼ 0:497; dashed-dotted line, af ¼ 0:499;
dotted line, no filtering.
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2.3. Localized artificial diffusivity (LAD) method

When central differencing schemes, such as high-order compact differencing schemes, are applied to solve flows that in-
volve steep gradients, such as shock waves, contact surfaces or material discontinuities, non-physical spurious oscillations
are generated that make the simulation unstable. A key issue here is the identification of an efficient algorithm that ensures
the removal of the non-physical spurious oscillations without affecting the physical motions (resolved scales of turbulence).

The discontinuity-capturing scheme used in this study is based on adding grid-dependent artificial fluid transport coef-
ficients to the physical transport coefficients appearing in Eqs. (3) and (5) proposed by Cook [1],
l ¼ lf þ l�; b ¼ bf þ b�; j ¼ jf þ j�; ð8Þ
where the f subscripts and asterisks denote fluid and artificial transport coefficients, respectively. The artificial fluid trans-
port coefficients are intended to automatically vanish in smooth well-resolved regions of the flow and provide damping in
non-smooth unresolved regions to capture different types of discontinuity. Cook [1] designed the artificial coefficients based
on a uniformly spaced Cartesian mesh by using high-derivative functions. According to him the artificial fluid properties l�,
b� and j� serve as a multi-purpose model for the subgrid-scale transport, for shock-capturing and contact surface capturing.

We model the localized artificial diffusivity on a multi-dimensional generalized coordinate system using the curvilinear
mesh extension of Kawai and Lele [2] with the length scaling modification of Mani et al. [8]. The localized artificial diffusivity
in a general form can be written as:
l� ¼ Clq
X3

l¼1

@rFl

@nr
l

Dnr
l D

2
l;l

�����
�����D2

l; ð9Þ

b� ¼ Cbqfsw

X3

l¼1

@rF b

@nr
l

Dnr
l D

2
l;b

�����
�����D2

b ; ð10Þ

j� ¼ Cj
qcs

T

X3

l¼1

@rFj

@nr
l

Dnr
l Dl;j

�����
�����; ð11Þ
where Cl, Cb and Cj are dimensionless user-specified constants, Fl;F b and Fj are the functions that detect the unresolved
subgrid-scale eddies, the steep gradients introduced by shock waves and contact surfaces. The fsw in Eq. (10) is the switching
function (shock sensor) that is designed to remove unnecessary artificial bulk viscosity in the region without shocks and local-
ize it near shock waves. The Dnl and Dl;� are the grid spacing in the computational space and physical space. Usually Dnl is set
to 1. The cs is sound speed, and nl refers to generalized coordinates n;g and f when l is 1, 2 and 3, respectively. If r is suffi-
ciently high, the artificial diffusivity is localized in the regions of discontinuity (unresolved high wavenumber kr content of
the flowfield on a given mesh). The overbar denotes an approximate truncated-Gaussian filter [3]. One important aspect for
the artificial diffusivity model is to choose the appropriate detector functions Fl;F b and Fj in Eqs. (9)–(11) to effectively
detect different types of discontinuity while automatically deactivating in the regions where subgrid-scale eddies, shock
waves and contact surfaces are not present. In this study, Fl ¼ S and Fj ¼ e ¼ 1

c�1
p
q are chosen as proposed by Cook [1].
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For the artificial bulk viscosity, the following four different sets of F b and fsw are used to evaluate the impact of the arti-
ficial bulk viscosity on turbulence in compressible flows with shocks:

1. F b ¼ S and fsw ¼ 1 ( essentially the choice of Ref. [4]).
2. F b ¼ r � u and fsw ¼ 1.
3. F b ¼ r � u and fsw ¼ Hð�r � uÞ (the choice of Ref. [8]).
4. F b ¼ r � u and fsw ¼ Hð�r � uÞ � ðr�uÞ2

ðr�uÞ2þjr�uj2þe
.

The proposed improvement (item 4) is to employ the combination of the negative dilatation Hð�r � uÞ and the Ducros-
type sensor [23] ðr�uÞ2

ðr�uÞ2þjr�uj2þe
switching in the dilatation based artificial bulk viscosity model where H is the Heaviside func-

tion and e ¼ 10�32 is the small positive constant to prevent division by zero in the region where both r � u and r� u are
zero. The model enable to localize the artificial bulk viscosity only near shock waves. The negative dilatation switching re-
moves the unnecessary bulk viscosity from expansion regions and the Ducros-type sensor reduces the bulk viscosity at
weakly compressible regions without shocks induced by the motions of turbulent eddies. The artificial bulk viscosity is
not required in both the expansion and weak compression regions. The Dl and Db are the wall-damping function for the
supersonic wall-bounded viscous flow simulations (Section 3.3) to force the artificial viscosity to vanish in the near wall
portion of the boundary layers if necessary. The following Van Driest wall-damping function is used in this paper:
D ¼ 1� exp �yþ

Aþ
, where the Van Driest constant Aþ is 26. It was found that j� automatically damps in near wall region

(also negligibly small throughout the boundary layer). Thus the wall-damping function is not used for the artificial thermal
conductivity j�. We note that depending on the choice of the detector functions Fl;F b and Fj the dimensional
scaling constants and the exponent of the length scales Dl;� in Eqs. (9)–(11) might need to change in order to retain the
proper physical units for l�; b� and j�. It should also be noted that the current formulation employs a scalar artificial
diffusivity (no directionality) for simplicity thus applying the same value of the artificial diffusion coefficient in every
direction.

The Dl;� is the grid spacing and is used to scale the artificial diffusivity properly. We define the grid spacing as
follows:
Dl;l ¼ jDxlj; Dl;b ¼ Dxl �
$q

j$qj

����
����; Dl;j ¼ Dxl �

$e
j$ej

����
����: ð12Þ
The Dxl is the local displacement vector along the grid line in the nl direction and defined as Dxl ¼ xiþ1�xi�1
2 ;

yiþ1�yi�1
2 ;

ziþ1�zi�1
2

� �T ,
where the nodes in the nl direction are indexed by i. Thus Dl;b and Dl;j are the grid spacing in the nl direction perpendicular to
the shock waves and contact surfaces. The length scaling used here is the natural extension based on Ref. [8] and is an
improvement over the scaling defined in Ref. [2].

In the present study r ¼ 4 is adopted in Eqs. (9)–(11). Instead of using a series of Laplacians as proposed by Cook and Ca-
bot [4], the fourth derivative @4F

@n4
l

are evaluated by a fourth-order explicit scheme at interior points and second-order schemes

near boundary points [2]. This simplification does not lead to tensorial invariance but does not show any major detrimental
effect on both the smooth and non-smooth flows (discontinuity-capturing) while significantly reducing computational cost
[2].

The dimensionless user-specified constants are set to Cl ¼ 0:002 and Cj ¼ 0:01. The constant Cb is set to 1.0 for the strain
rate tensor based artificial bulk viscosity F b ¼ S and Cb ¼ 1:75 for the dilatation based bulk viscosity F b ¼ r � u unless other-
wise noted. The different constant for the models gives comparable shock capturing capability in terms of wiggles amplitude
and numerical shock thickness (as will be discussed in the following Section 3.1), thus allowing us to make a fair comparison
between the models. Fixed values of these constants (as given above) allows the scheme to capture discontinuities for var-
ious types of cases. Although the constants work well for wide range of test cases when r ¼ 4 in Eqs. (9)–(11) and sixth-order
compact/eighth-order filtering schemes are used, the constants might possibly need to be adjusted if different value of r or
other numerical schemes are adopted.
3. Numerical results

The study presented here can be broadly classified into three categories: effect of bulk viscosity modeling, SGS mod-
eling and time-integration schemes/time-step size. First we tested a class of artificial bulk viscosity models and SGS mod-
els to investigate their performance on compressible turbulent flows. A summary of the numerical methods used in the
present study is listed in Table 1 where ASV and DSM are the artificial shear viscosity model and the dynamic Smagorin-
sky model, respectively. We loosely regard the artificial shear viscosity model as a SGS model throughout the paper. The
acronyms for various methods in this table are used in later discussion. The first four cases in the table are used to access
the performance of the detector and the switching functions (F b and fsw) in the artificial bulk viscosity model, while the
last three cases aid in judging the effect of SGS modeling. Later in the paper, the effects of the implicit time-integration
scheme and the time-step size on compressible turbulent flows within the framework of the numerical scheme developed
in this paper are addressed.



Table 1
Summary for localized artificial diffusivity models.

Method Cb F b fsw SGS model Dl Db

LAD-S-0 1.0 S 1 None Inactive 1� expð�yþ=AþÞ
LAD-D0-0 1.75 r � u 1 None Inactive 1� expð�yþ=AþÞ
LAD-D1-0 1.75 r � u Hð�r � uÞ None Inactive 1� expð�yþ=AþÞ
LAD-D2-0 1.75 r � u Hð�r � uÞ � ðr�uÞ2

ðr�uÞ2þðr�uÞ2þe
None Inactive 1

LAD-D2–ASV 1.75 r � u Hð�r � uÞ � ðr�uÞ2
ðr�uÞ2þðr�uÞ2þe

ASV 1� expð�yþ=AþÞ 1

LAD-D2–DSM 1.75 r � u Hð�r � uÞ � ðr�uÞ2
ðr�uÞ2þðr�uÞ2þe

DSM Inactive 1
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3.1. Stationary normal shock wave: effect of Cb

Because the dilatation based artificial bulk viscosity model is different from the original strain rate tensor based model,
we first investigate the effect of user-specified constants Cb for the dilatation based bulk viscosity. One-dimensional inviscid
Mach 2 stationary normal shock wave that corresponds to a pressure jump pr=pl ¼ 4:5 is used here for the discussions. l� and
j� are turned off ðl� ¼ j� ¼ 0Þ in this test case. Since the LAD-D1 and LAD-D2 reduce to the same scheme for 1D flows, the
results of LAD-D1-0 and LAD-D0-0 are shown with Cb ranging between 0 and 2.5. Simulations are performed on a uniformly
spaced grid with 101 grid points in the region of �0:5 6 x 6 0:5ðDx ¼ 0:01Þ.

Figs. 2 and 3 show the converged pressure profiles across the stationary shock wave and the maximum wiggles amplitude
in a semi-logarithmic plot and numerical shock thickness for Cb ranging between 0 and 2.5 obtained by LAD-D1-0 and LAD-
D0-0. In the plot of wiggles amplitude and shock thickness, the original strain rate tensor based bulk viscosity (LAD-S-0) with
Cb ¼ 1:0 is also included. Cook [1] recommended the value of Cb ¼ 1:0 for the strain rate tensor based bulk viscosity. The
wiggles amplitude is normalized by the pressure jump across the shock wave Dp ¼ pr � pl and the numerical shock thickness
is defined by:
Fig. 2.
dashed
d
Dx
¼ Dp

Dx @p
@x jmax

: ð13Þ
There is a clear trade-off between the wiggles amplitude and numerical shock thickness. That is, as Cb increases, the numer-
ical shock discontinuity is smeared and the amplitude of the spurious oscillations decreases. For Cb ¼ 1:75, the shock is cap-
tured over approximately 4 d

Dx with the maximum wiggles amplitude of 0.4%. That is comparable to the capability of the
shock capturing using Cook’s strain rate tensor based bulk viscosity with Cb ¼ 1:0. LAD-D1-0 and LAD-D0-0 (with and with-
out the negative dilatation switch Hð�r � uÞ) show almost identical results except the case of Cb ¼ 0:5. Although one is free
to choose the value of Cb;Cb ¼ 1:0 is used for F b ¼ S based bulk viscosity model and Cb ¼ 1:75 is used for F b ¼ r � u based
models for all the test cases discussed in the rest of the paper in order to methodically assess the performance of the detector
and switching functions (F b and fsw) for the artificial bulk viscosity while retaining the comparable shock-capturing capabil-
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ity. With these value of Cb;Cb ¼ 1:0 for F b ¼ S and Cb ¼ 1:75 for F b ¼ r � u, LAD-D1-0, LAD-D0-0 and LAD-S-0 for the 1D
canonical inviscid shock-related test problems (Sod shock-tube problem [12] and Shu–Osher problem [13]) also show almost
identical results. The results are given in Appendix A.

3.2. Compressible decaying isotropic turbulence with shocklets

The performance of the various models on the compressible decaying isotropic turbulence with eddy shocklets is inves-
tigated here. This 3D test case presents a simple and efficient way for the evaluation of the dissipation characteristics of the
numerical models. At a sufficiently high turbulent Mach number, weak shock waves (eddy shocklets) develop spontaneously
in the flowfield. The isotropic field can be characterized by the turbulent Mach number and Reynolds number (based on the
Taylor micro scale) defined as follows: Mt ¼

ffiffi
3
p

urms
hci ;Rek ¼ hqiurmsk

hli . In the above expressions urms is given by urms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
huiuii=3

p
. The

length scale k is defined as k ¼ 1
3

P
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hu2

i
i

@ui
@xi

� 	2

 �vuut . The initial field consists of a random solenoidal velocity distribution ui;0 which

has a power spectra given by, EðkÞ � k4 expð�2ðk=k0Þ2Þ. The velocity variance is related to the energy spectra by,
hui;0ui;0i

2 ¼ 3u2
rms;0
2 ¼

R1
0 EðkÞdk. Here the turbulent Mach number in the initial field is chosen to be Mt;0 ¼ 0:6. At this Mach num-

ber we see shocklets develop rapidly in the field. The following set of parameters is chosen, q0 ¼ urms;0 ¼ T0 ¼
1; c ¼ 1:4; Pr ¼ 0:7; k0 ¼ 4; k0 ¼ 2=k0 ¼ 0:5;Rek;0 ¼ 102. The initial density and pressure fields are set to be constant in the do-
main, thus indicating that the initial field is not in acoustic equilibrium giving rise to occurrence of strong transient acoustic
waves in the field.

The viscosity in the fluid is assumed to obey a power law, l
lref
¼ T

Tref

� 	0:75
. The eddy turn over time is used as a time scale as

it is defined as s ¼ k0=urms;0. The simulation is run on a 643 uniform Cartesian mesh which spans ½0;2pÞ along each axis in the
physical domain. A fourth-order Runge–Kutta method with the non-dimensional time step of Dt=s ¼ 0:008 is used for time
integration unless otherwise noted. The time step size corresponds to the maximum inviscid CFL number of 0.5. Periodic
boundary condition is used in all three directions. The simulations are run till the end time t=s ¼ 4. The turbulent statistics
are averaged over the computational domain and are denoted as hf i.

The temporal evolution of mean square velocity, variances of density fluctuations and the variances of the vortical and
dilatational motions present good metrics for a comparison of the numerical models. Their performance in terms of ability
to capture shocklets and at the same time be less dissipative on the statistics of the turbulent flowfield can be judged with
this data. The Fourier spectra of velocity, density, dilatation and vorticity yield insight into the range of wave numbers where
the artificial diffusivity model is active. The artificial diffusivity models are designed to act mainly in the high wave number
range and have minimal influence on the low wavenumber content of the flowfield. Solutions from the DNS on a 2563 grid
are given by Johnsen et al. [6] using the hybrid scheme [24] (sixth-order central differencing in split form + fifth-order finite
difference weighted essentially non-oscillatory (WENO) scheme for the interpolation and Roe flux-splitting with entropy fix
for the upwinding) and are used as a reference solution in all the comparisons. The reference solutions of spectra are com-
puted using the 2563 DNS solution at the end time while the reference solution for the temporal evolution of turbulent sta-



1746 S. Kawai et al. / Journal of Computational Physics 229 (2010) 1739–1762
tistics is computed from the DNS field that is spectrally filtered from the 2563 domain to a 643 domain. Predictions of the
quantities from a seventh-order finite difference WENO [25] on a 643 domain are also presented. The data of 2563 DNS
and 643 WENO were provided by Dr. J. Larsson and we are grateful for it.

3.2.1. Performance of artificial bulk viscosity
To compare the effect of the detector and switching functions in the artificial bulk viscosity models, simulations of the

flowfield are carried out using the methods LAD-S-0, LAD-D0-0, LAD-D1-0 and LAD-D2-0 that are described in Table 1. It
should be noted that all models without the low-pass filtering were found to be numerically unstable.

Fig. 4 shows the temporal evolution of various statistics of turbulence. The WENO scheme is seen to under-predict the
mean square velocity and variance of vortical motions thus illuminating its dissipative characteristics for broadband mo-
tions. When comparing the methods LAD-D2-0, LAD-D1-0 and LAD-D0-0, all of which have the same detector function F b

but differ only in their switching function fsw, the LAD-D2-0 shows superior performance in predicting the density and dila-
tational variances while the evolutions of the mean square velocity and variance of vorticity exhibit very similar trends in
their prediction. The LAD-D2-0 method uses the Ducros-type switch, which reduces the artificial bulk viscosity in proximity
of weak compression regions (unlike the LAD-D1-0 method, which has only the negative dilatation switch), is seen to be les-
ser dissipative on evolution of density and dilatational variances. The variance of pressure and temperature show a similar
behavior to that of the density (not shown here). As indicated previously the artificial bulk viscosity is seen to mainly affect
dilatational modes but have a certain (minimal) effect on the vortical modes as well. This is seen clearly in Fig. 4(d) where the
dilatation based methods, LAD-D2-0, LAD-D1-0 and LAD-D0-0 show very similar evolution for vorticity variance but LAD-S-0
slightly under-predicts the trend. The artificial bulk viscosity based on the strain rate tensor (LAD-S-0) is seen to highly damp
the variances of the density and the dilatational motions compared with the dilatation based methods.

This is also evident in the contour plots of dilatation in Fig. 5. The dark spots represents the presence of negative dilatation
(eddy shocklets appearing in the flowfield) which is absent when using the LAD-S-0 method which causes excessive damp-
ing of dilatation. The LAD-D2-0 scheme preserves the most of the features obtained by the DNS and more closely agrees with
the DNS than the LAD-D1-0 and LAD-D0-0. It can be concluded (as in Mani et al. [8]) that dilatation based artificial bulk vis-
cosity model exhibit better capability in predicting the turbulent statistics when compared to the strain rate based artificial
bulk viscosity model.
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Fig. 4. Comparison of performance of different artificial bulk viscosity models on compressible isotropic turbulence: Temporal evolution of variance of
different quantities on a 643 grid compared with filtered DNS calculation computed on a 2563 grid. Circle, filtered DNS; solid line, LAD-D2-0; dashed line,
LAD-D1-0; dashed-dotted line, LAD-D0-0; dotted line, LAD-S-0; dashed-triple-dotted line, WENO.



Fig. 5. Contours of dilatation h=ðurms;0=k0Þ at end time t=s ¼ 4;20 equally spaced contours from �1.0 to 1.0. Light and dark colors show positive and negative
dilatation.
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These observations are further supported when the spectra of velocity, density, dilatation and vorticity are compared in
Fig. 6. The LAD-S-0 method is seen to be very dissipative for all density and dilatational modes (low as well as high wave
numbers). The WENO scheme shows good agreement with the reference solution for a small range of wavenumbers only.
The dilatation based bulk viscosity method with the negative dilatation and the Ducros-type switches (LAD-D2-0) shows
good agreement with the reference solution over a large range of wavenumbers. The other dilatation based bulk viscosity
methods (LAD-D1-0 and LAD-D0-0) damp the low wavenumber content of density and dilatation spectra.
3.2.2. Role of switching functions in dilatation based artificial bulk viscosity
In this section we clarify the role of the switching function fsw employed in the dilatation based artificial bulk viscosity

model. Fig. 7 shows the dilatation and artificial bulk viscosity fields without the application of the approximate trun-
cated-Gaussian filter [the overbar in Eq. (10)] to smoothen the artificial viscosity. The distribution of the sensor components
jr � uj2 and ðr � uÞ2 and the sensor functions along the white dashed line in Fig. 7(a) is shown in Fig. 8. The filtered DNS
flowfield at t=s ¼ 0:4 is used for the discussion. The dark spots in Fig. 7(a) represents the presence of shocklets. As expected,
the strain rate tensor based model (LAD-S) is activated throughout the domain and unable to distinguish shocks from tur-
bulence (Fig. 7(b)). We also note that the dilatation based model without any switching function (shock sensor) activates at
shocks but is also active at expansion and weakly compressible turbulence regions on the LES grid as shown in Fig. 7(c). This
leads the damp of the evolution of density and dilatation as discussed in Section 3.2.1. The model without the switching is
unable to distinguish shocks from regions of expansion and weakly compressible turbulence regions without shocks.
Employing the shock sensor (switching function fsw) in the model shows significant improvements. The negative dilatation
switching removes the unnecessary bulk viscosity at expansion regions as shown in Fig. 7(d), which is the choice of Ref. [8].
Differences between the proposed b� model (LAD-D2) and the model of Ref. [8] (LAD-D1) can be observed in the weakly com-
pressible turbulence regions without shocks as shown in Figs. 7(d) and (e) and 8. The combination of negative dilatation and
Ducros-type switching effectively removes the unnecessary artificial bulk viscosity from expansion and weakly compressible
turbulence regions and localizes the bulk viscosity near the shocks while the model without the Ducros-type switching is
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unable to distinguish shocks from the weak compression regions without shocks. The proposed b� is more effective in local-
izing the artificial viscosity and leads to significant improvements in the compressible isotropic turbulence with shocks
while retaining the shock-capturing capability.

The artificial bulk viscosity fields with the application of the approximate truncated-Gaussian filter that are used in the
computations are shown in Fig. 9. Without the switching function both the F b ¼ S and r � u based artificial bulk viscosity
(Fig. 9(a) and (b)) are activated throughout the domain while the F b ¼ S based model gives higher b� at the turbulence re-
gions. By employing the negative dilatation and Ducros-type switching to localize b� at shocks, the averaged hb�i is reduced
by a factor of 9 from that of without switching (Fig. 9(b)) and by a factor of 5 from that of with negative dilatation switching
(Fig. 9(c)).

In this section the need for a shock sensor (switching function) in combination with artificial bulk viscosity was empha-
sized. The shock sensor used in this study (the combination of the Ducros-type sensor and the negative dilatation sensor)
significantly improves the performance of artificial bulk viscosity. We note that the present shock sensor may not be the only
choice. The choice of an effective shock sensor suitable for a broad range of shock–turbulence problems remains an open
question. To avoid introducing additional empirical coefficients we use the combination of the Ducros-type sensor and
the negative dilatation sensor. The hypothesis of weakly compressible turbulence assumed in the Ducros-type switching
is supported by the low level of dilatation compared to enstrophy within the shock-free turbulent flow as shown in
Fig. 8(a). Note that the Ducros-type sensor has been successfully applied to variety of LES and DNS of compressible turbulent
flows to identify shocks [23,24,26–31]. However, if the hypothesis of weakly compressible turbulence is not valid then a dif-
ferent sensor may be required.
3.2.3. Effect of SGS models
Using the LAD-D2 model for the artificial bulk viscosity the performance of the artificial shear viscosity model (loosely

regarded as a SGS model) and the dynamic Smagorinsky model [9,10] on the isotropic turbulence problem is evaluated. First
the results obtained for the fixed values of Rek;0 ¼ 102 and af ¼ 0:495 are shown. In Figs. 10 and 11 the LAD-D2-0 method (no
explicit SGS model), LAD-D2–ASV (artificial shear viscosity model) and the LAD-D2–DSM (dynamic Smagorinsky model) are



Fig. 7. Role of switching function fsw on dilatation based artificial bulk viscosity. Contours of dilatation h=ðurms;0=k0Þ and artificial bulk viscosity b�=l1
without applying the approximate truncated-Gaussian filter at t=s ¼ 0:4 based on the filtered DNS flowfield. Twenty equally spaced contours from �7.0 to
7.0 for dilatation and from 0.0 to 50.0 for artificial bulk viscosity.
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Fig. 10. Comparison of the effect of SGS models on compressible isotropic turbulence: Temporal evolution of variance of velocity and vorticity in
comparison with filtered DNS calculation computed on a 2563 grid. Circle, filtered DNS; solid line, LAD-D2-0; dashed line, LAD-D2–ASV; dashed-dotted line,
LAD-D2–DSM.

Fig. 9. Contours of artificial bulk viscosity b�=l1 and averaged bulk viscosity hb�=l1i at t=s ¼ 0:4 based on the filtered DNS flowfield. Twenty equally
spaced contours from 0.0 to 50.0.
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compared with the reference DNS solution in terms of the temporal evolution and spectra of velocity and vorticity. A com-
mon trend is noticed in these figures. Under the conditions examined, adding an explicit SGS model is seen to result in addi-
tional damping of the resolved turbulence and somewhat under-predicts the turbulence field statistics. The artificial shear



10-5

10-4

10-3

10-2

10-1

100 101

Eu

k

10-1

100

100 101

Eω

k

Fig. 11. Comparison of the effect of SGS models on compressible isotropic turbulence: Spectra of velocity and vorticity at end time t=s ¼ 4 in comparison
with DNS calculation computed on a 2563 grid. Circle, DNS on 2563 grid; solid line, LAD-D2-0; dashed line, LAD-D2–ASV; dashed-dotted line, LAD-D2–DSM.

S. Kawai et al. / Journal of Computational Physics 229 (2010) 1739–1762 1751
viscosity model shows slightly less damping than the dynamic Smagorinsky model. The variance and spectra of density and
dilatation also show a similar behavior (not shown here).

As mentioned before in the discussion of numerical schemes, the solver is coupled with an eighth-order high wavenum-
ber filter applied to the conservative variables in each direction after each final Runge–Kutta step. The cut-off property of the
filter is suspected to have a significant influence on the evolution of the flow variables and the derived quantities. In order to
investigate the effect of the SGS models further it is necessary to explore their behavior for different filter coefficients af

(higher af is a more high-wavenumber biased filter) and for different Taylor scale Reynolds number. The Taylor scale Rey-
nolds numbers are increased in factors of 10 from the present case where Rek ¼ 102. The performance of the three schemes,
LAD-D2-0, LAD-D2–ASV and LAD-D2–DSM, are studied in a two-dimensional parameter space of af ¼ 0:495;0:497 and 0.499
and Rek ¼ 102;103;104 and 105. Detailed investigation of the temporal evolution and spectral content of the turbulent flow-
field is carried out for all the combinations. Figs. 12 and 13 present some highlights of this study.

Fig. 12 shows the temporal evolution of mean square velocity and vorticity variance for three different Reynolds numbers
for the three different SGS models. The results with the filter coefficient af ¼ 0:495 are shown on the left and the results with
af ¼ 0:497 are on the right. As the Reynolds number is increased, the evolution for each different model progressively be-
comes insensitive to the Reynolds number and tend to converge. The evolutions at Rek ¼ 104 and 105 are almost identical
(not shown). The results suggest that the low-pass filtering, artificial bulk viscosity and SGS models (when used for LAD-
D2–ASV and LAD-D2–DSM) affect the flowfield for the high Reynolds number cases. By comparing Fig. 12(a) and (b) the en-
ergy containing fluctuations (the variances of the velocity and thermodynamic properties) are insensitive to the filter coef-
ficient (we only show the velocity variance here) although the vorticity variance (and dilatation variance although not
shown) is filter dependent at the high Reynolds numbers. The predicted velocity and vorticity variance (and density and dila-
tation fluctuations although not shown here) show large sensitivity to the SGS model with increasing the Reynolds number.
The methods with an explicit SGS model (LAD-D2–ASV and LAD-D2–DSM) limit the growth of vorticity variance and do not
encounter the numerical instability at the high Rek for af ¼ 0.495 and 0.497. Higher peak values are reached as Rek is in-
creased but the peak values reached for 105 are close to those for 104 (not shown). Numerical instability was encountered
with the LAD-D2-0 method for af ¼ 0:495 at Rek ¼ 104 and 105 and af ¼ 0:497 at Rek ¼ 103;104 and 105. Note that some
curves in Fig. 12 stop at a finite time due to the numerical instability. All methods explored in this paper regardless of
the inclusion of the explicit SGS model encounter numerical instability for af ¼ 0:499 with Rek ¼ 103;104 and 105 (not
shown here). These results illustrate the relative roles played by the explicit SGS model, low-pass filtering and artificial bulk
viscosity and suggest the need for including an explicit SGS model for the higher Reynolds numbers (highly under-resolved
cases).

This is further supported when wavenumber spectra are compared. Fig. 13 shows the vorticity spectra at t=s ¼ 2:6 for the
three different Reynolds numbers with af ¼ 0:495. The evolution of vorticity variance obtained by the LAD-D2-0 for
Rek ¼ 103 and 105 shows a peak close to this time. It is clearly seen that for the high Rek, the inclusion of an explicit SGS
model is necessary to remove the high energy at the unresolved high wavenumbers.

The results summarized here illustrate the relative roles played by the physical viscosity, low-pass filtering, the SGS mod-
els and artificial bulk viscosity. It is reasonable to conclude that for the moderate Reynolds number and turbulent Mach num-
bers, the inclusion of the explicit SGS model results in additional damping of the resolved turbulence and under-predicts the
turbulence field statistics. In addition to the effect of physical viscosity, artificial bulk viscosity and the low-pass filter (ap-
plied to the conservative variables after each time-step) provide enough numerical damping to handle physical discontinu-
ities, unresolved scales and the non-physical spurious oscillations from the discretization scheme. However, the results of
the high Reynolds numbers (highly under-resolved cases) suggest the need for inclusion of a SGS model. Simulations without
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Fig. 12. Comparison of the effect of SGS models for different Reynolds numbers: Temporal evolution of mean square velocity and variance of vorticity with
filter coefficient af ¼ 0:495 and 0.497. Rek ¼ 102 (lower curves), Rek ¼ 103 (middle curves) and 105 (upper curves). Solid line, LAD-D2-0; dashed line, LAD-
D2–ASV; dashed-dotted line, LAD-D2–DSM.

10-1

100

101

100 101

Eω

k

Fig. 13. Comparison of the effect of SGS models for different Reynolds numbers with af ¼ 0:495: Vorticity spectra at t=s ¼ 2:6. Rek ¼ 102 (lower curves),
Rek ¼ 103 (middle curves) and 105 (upper curves). Solid line, LAD-D2-0; dashed line, LAD-D2–ASV; dashed-dotted line, LAD-D2–DSM.
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